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Propagation in I?errite~Filled IVIicrostrip*
MORRIS E. BRODWIN~

Summary —The propagation constant of a ferrite-~led microstrip

is measured as a function of the longitudinal static magnetic field,

The results agree with the analysis by Van Trier of the idnite paral-

lel plane waveguide filled with gyromagnetic metla. The analysis is
extended to anisotropies greater than 0.5. A simple relationship be-

tween propagation constant and anisotropy for the quasi-TEM mode
with small spacing (X<<&) is noted. Cutoff spacings for higher
modes are calculated. An apparatus for the measurement of propaga-
tion constant independently of interface reflections is described.

INTRODUCTION

P
ROPAGATION of electromagnetic waves in

media possessing tensor permeability has been

the subject of considerable investigation. This

interest has been stimulated by the development of

low-loss ferromagnetic materials called ferrites which

easily exhibit electron spin resonance. Van Trierl has

solved the case of a circular waveguide filled with ferrite

and biased in the direction of propagation. He also an-

alyzed in some detail the ferrite-filled parallel plane

waveguide with a longitudinal magnetizing field. The

case of circular waveguide filled with ferrite material

and magnetized in the direction of propagation has

also been treated by Kales.2 Lax3 has investigated the

rectangular waveguide partially filled with ferrite and

transversely magnetized.

The principal experimental work with ferrites has

been largely restricted to the circular and rectangular

waveguide structures. The only reported work in strip-

Iine waveg-uide is that of Fix4 and Arditi.5 Fix’ placed

the ferrite material between two coupled strip-lines.

When the stripline fields are in phase quadrature, a

circularly polarized wave is produced in the fringing

region. With a longitudinal static magnetic field, the

structure exhibited nonreciprocal effects. Arditi5 sym-

metrically located the ferrite slab in a microstrip struc-

ture and took measurements of relative attenuation and

phase shift. No attempt was made to explain quantita-

tively the experimental results.

The problem treated in this paper is the determina-
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tion of the applicability of the parallel plane waveguide

analysis to the wide strip ferrite-filled microstrip. More

specifically, we attempt to determine how closely the

variation in propagation constant with longitudinal mag-

netic field for microstrip follows the variation predicted

by a parallel plane analysis of the quasi-TEM mode.

The analysis of Ilan Trier is extended to include high

values of anisotropy.

A simple relationship between anisotropy and propa-

gation constant is derived for the quasi-TEM mode.

Experiments are described for determining the propa-

gation constant independent of the ferrite interface

reflections.

ANALYSIS

We consider the medium to be a lossless dielectric

with a tensor permeability

r/J1 —4.42 o 1
(P)=pz RI 0 .

1

(1)

Lo o y~

If the ferrite is demagnetized p, =Pl and ,M = O; at satu-

ration K3 =po.

We commence with a cartesian coordinate system

with the biasing magnetic field in the z ciirection. The

fields are assumed to be of the form U(X, y)e~~~–rz. Fo1-

lowing Van Trier, the substitution of the tensor perme-

ability into Maxwell’s equations yields the coupled

wave equations

Vi2H3 + aH. + bEZ = O (2a)

and

V,2E8 + GE, + dHZ = O (2b)

where

c= P+u%p,[l-(’)z]
d = Wpzr.

By means of a change in variable

E.=al+az (3a)

Hz = KIal + KXX2 (3b)

where .KI and K.z are chosen to uncouple the equations

in al and CW.
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Eqs. (2a) and (2b) can be written as

Vt%% + ff,za, = O ~=l,z (4)

where

U1,22 lp2’
U1,2V2 = —

()

–rT2+l– _ _

tAl%Jl

‘ {iKJ~”?’2)
(5)

Application of the boundary condition, Et~~ = O yields

Gt+a’=o

and

[

a 1[ ;;(3
a.i? ; (U2121 + ulb2) – &\ ~ (C&w+ U1’cw)

1

[
+ [ala+ ad] : (al + a2) 1=0

(6a)

(6b)

a = { r2 + ~2e(M1 + Y2)] {r2 + CU24L1 – P2)}.

13/&, d/dq are the tangential and normal derivatives.

The symmetrical and antisymmetrical solutions of (4)

are substituted into the boundary conditions, (6a) and

(6b), and the resulting expressions evaluated on the

boundary of Fig. 1. This process leads to two equations

which are implicit relations involving the propagation

constant and the anisotropy, PCJPI.

Restricting the discussion to the antisymmetric solu-

tions leads to the following relation involving r,.

olP2 – 02PI = o

where

01,2 = @.L1timcT2,1r[l – UUI,~,2J

()
2

l+rr2– ~fi

P1
u=

0
(rr2+ 1)2 – -!!! 2

IJl

(7)

~—i.z ,1, X.,
1

Values of the propagation constant l?, are deter-

mined by choosing a suitable spacing and anisotropy

and varying the propagation constant until the left-

hand side of (7) is zero. Eq. (7) applies to the odd quasi-

TE modes, and even quasi-TM modes as well as the

quasi-TEM mode. The ambiguity between a correct

L---+++
A I

Fig. l—Coordinates for parallel plane waveguide.
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Fig. 2—Propagation constant vs anisotropy—quasi-TEM.

value of propagation constant and the mode with which

it is related is resolved by starting the calculations with

small anisotropy. The assumed values of propagation

constant are chosen in the immediate region of the cor-

responding isotropic mode.

The propagation constant, 17,, for the c[uasi-TIEM

mode has been calculated for a range of X., and KJPI,

Fig. 2. The curve Xor = 1..5 corresponds to the behavior

of the waveguide with approximately h/2 spacing be-

tween the parallel planes. The wavelength, k, is the in-

trinsic wavelength associated with the material. For

spacings less than A/2, the dependence of ~~, on 1.L2/pl

approaches a circular locus. Additional curves (Xo, = 0.1,

0.2, 0.3) were calculated but are not displayed since

they overlap the X., =0.414 cum. This res~ll~is u:$eful

for design purposes since it relates the propagation con-

stant and anisotropy in a simple fashion.
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For small spacing (X., < 0.414)

(8)

The error between points calculated with (8) and points

laboriously calculated with (7) is less than 0.9 per cent

for small spacing.

For large spacing (Xo, = 5), the trend is reversed.

The propagation constant increases with anisotropy

instead of decreasing. This peculiar behavior implies

that the waveguide acts as a slow wave structure for

large spacing and a fast wave structure [or small spac-

ing.

When the anisotropy is unity, the corresponding

value of the propagation constant is undetermined.

This result arises from the behavior of U as p2/~1 -l

and F,-+0. U can have any value depending upon the

manner in which the variables approach the limit. The

trend of the values for anisotropy less than unity and

small spacing indicates that the propagation constant

tends toward zero as the anisotropy tends toward

unity. This result has been verified experimentally. For

an anisotropy greater than unity, values of the propa-

gation constant cannot be determined from (7) or its

symmetric counterpart. For example, Fig. 3 is a plot of

OIPZ – 02PI vs 11,/i with pJpl = 2, XO, = 0.414. At

low values of I’,/i, the function is imaginary and nega-

tive. As I’,/i increases, the functions tend toward in-

finity. At a larger value of I’,/i, the function starts again

with negative real values. Since the function does not

pass through zero, the waveguide is beyond cutoff for

anisotropies greater than unity.

The critical spacings for the higher modes is deter-

mined by setting r, equal to zero in (7) and solving for

Xo,’.

fhlr
jyo: = even ph.

2[1-(:)21”2
(9)

When the process is repeated for the symmetric solu-

tions, the same result is obtained, but with odd n. The

mode titles are assigned by comparing the result with

the solutions for the isotropic case.

The critical spacing for the quasi-TM. modes ~re

shown in Fig. 4. The criticad spacings for the quasi-TE

modes are the same as thle critical spacings for the

quasi-TM modes. This degeneracy in the isotropic case

is preserved in the anisotropic case. If we choose a

spacing much smaller than 1(/2 to insure that the quasi-

TEM mode is the only propagating mode, then an in-

crease in anisotropy does net permit the propagation of

higher modes. This result follows from the increase in

critical spacing with increasing anisotropy.

EXPERIMENTAL PROCEDURE

The experimental problem is to determine how closely

the ferrite-filled microstrip approximates the theoret-
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Fig. 4—Critical spacings for the higher modes.

ical predictions of the parallel plane waveguide. The

technique consists of placing a ferrite-filled microstrip

in a longitudinal magnetic field and determining the

relationship between the propagation constant and the

magnetic field. In order to approach as closely as possible

the parallel plane case, the upper strip width is approxi-

mately ~/2. The microstrip geometry is shown in Fig. 5.

The principal experimental difficulties are caused by

the necessity for placing the microstrip within a sole-

noid. The space limitations prohibit the use of direct

field sampling techniques. If measurements are taken

external to the ferrite section, the usual phase sensitive

bridges are subject to errors caused by variable dielec-

tric-ferrite interface reflections. To avoid these difficul-

ties, a perturbation technique was employed. This ap-

paratus consists of a movable small reflector mounted
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w=.22in prepared and fitted into a polystyrene slab. The dielec-
s =.88 in,

tric sample holder was cut with linear tapers at each

end to reduce reflections from the transitions. The up-

per and lower conducting planes were prepared by

spraying silver paint on the masked sample holder and

electroplating a 50-micron copper film. The ferrite em-

ployed in these experiments was ‘( R-l ,“ manufactured

by General Ceramic and Steatite. The dielectric con-

stant of the ferrite, e = 7.3, was measured by a standard
ANE waveguide technique and by the microstrip method pre-

viously described. This value is considerably different

Fig. 5—Microstrip geometry.
from the nominal value of 13. The discrepancy is pos-

sibly due to the large batch to batch variation of early

ferrite materials.

Fig. 6—Apparatus for perturbation technique.
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Fig. 7—Phase sensitive bridge.

close to the upper plane of the stripline, Fig. 6. The

metal wedge reflects part of the fringing field, and the

resultant reflections are determined by a microwave

bridge, Fig. 7. The position of the reflecting element is

controlled by means of a lead screw. tl; hen the reflect-

ing element is displaced by &/2, the total reflection

from the sample is unchanged. In this manner, the in-

terface reflections as well as any reflections from the

transitions do not affect the measurement.

The samples were prepared in the following manner.

To insure that higher modes would not propagate, the

spacing between upper and lower planes of the strip-

line was chosen as 0.057 inch for a dielectric constant of

7.3. Rectangular samples, %XI* XO.057 inch, were

EXPERIMENTAL RESULTS

The phase constant was measured for magnetic fields

between O and 1700 oersteds. The results of these measu-

rements are shown k Fig. 8. To determine the relative

transmission loss, a matched detector was placed at the

output transition and the detected energy was noted

for different values of applied field. These results are

shown in Fig. 9. No significant difference in phase tcon-

stant or insertion loss was noted when the experim~ents

were repeated with a reversed magnetic fielcl.

DiSCUSSiOn

The variation of phase constant with applied magn-

etic field agrees, qualitatively, with the predicted

behavior of the ferrite-filled parallel plane waveguide.

Starting with zero applied field, the phase constant

should decrease as the anisotropy is increased, Fig. 2,

XO, = 0.414. At the magnetic field at whichl the aniso-

tropy is unity, the propagation constant is zero. Above

this point, the ferrite section is beyond cutoff. The ex-

perimental data shows that the phase constant de-

creased until a field of 1025 oersteds was reached. The

transmission data indicates that the stripline was cut

off at 1025 oersteds. The maximum field was 1700

oersteds. The theory, as previously developed, camnot

predict losses since it was assumed that ~1 and PZ arc

real quantities. Consequently, the propagation constant

is a pure imaginary and attenuation is not expected.

The general trend of the relative transmission, Fig. 9

shows an increase in loss with an increase in magnetic

field. From 1025 to 1700 oersteds, the reading;s re-

mained constant. This small residual transmission is

attributed to leakage between the microstrip-waveguide

transitions. The fine variation in transmission is pro-

duced by the changing wavelength in conjunction with

the interface reflections. This is the typical interference

phenomenon observed with any resonant structure with

varying phase shift.

It is possible to obtain a theoretical expression for the

variation of phase constant as a function of the applied

magnetic field subject to the following simplifying as-

sumptions:
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Fig. 9—Relative transmission vs applied field.

1) The static field inside the sample is assumed to be

homogeneous. The effects of demagnetization can be

expressed by a demagnetizing factor. Since the sample

is a rectangular parallelepiped, the internal field is

actually inhomogeneous, but this effect is neglected.

2) The magnetic behavior can be expressed by a con-

stant magnetic susceptibility. This assumption is ap-

proximately correct only in the region of saturation.

With these assumptions, a relationship between p2/pl

and the applied field, H., can be determined.

The anisotropy is related to the applied field

Appendix)

P2 @yK(l + NK) Ha
— .—

PI T’Ha’(l + K) – @’(l + NZC)’

by (see

(lo)

where

co= angular frequency

7 = gyromagnetic ratio

K= magnetic susceptibility

N= demagnetization factor

H.= applied static magnetic field.

If the ferrite slab can be represented by an equivalent

ellipsoid of revolution, the demagnetization factor can

be calculated. With the dimensions of the slab used in

the experiments, N = 3 X 10–8. In the region of satura-

tion, K is on the order of unity and lVK<<l. The de-

magnetization effects, therefore, are neglected. The re-

lationship between anisotropy and H. is then given by

N’ uyKHa—— (11)
Ml ~2Ha2(l + K) – QY “

The susceptibility is determined by assuming that cut-

off occurs when the anisotropy is unity and solving (11)

for Kc for cutoff at 1025 oersteds. The calculated value

for Kc is 2.4..5. When this value of K is substituted into

(11), the resultant relationship between PJN, and H.

represents the theoretical behavior of the anisotropy

with the applied field. To determine I’,/; as a function

of I?a, (11) is substituted into (8).

This equation was employed for drawing the theoretical

curve of Fig. 8.

In general, the theoretical curve follows the trend of

the data. The principal discrepancy is in the region be-

tween 100 and 600 oersteds, where the experimental

points are lower than the predicted value. This dis-

crepancy may be a result of the assumption that K re-

mained constant. In the low-field region, where the

material is not saturated, K is larger than the chosen

value. Increasing K decreases the right-hand side of

(12) and would yield a smaller value for l_’,/L

A question arises as to how much of the insertion loss

is due to a cutoff effect and how much is due to radia-

tion from the microstrip. With this experimental tech-

nique, it is not possible to distinguish between the two

effects. However, the fact that the experimental points

agree very closely with the theoretical values in the

region of large insertion loss might indicate that the

cutoff effect predominates.

APPENDIX

The relationship between the applied magnetic field

and anisotropy is derived from Polder’s equations for

w and pz:

@D. Polder, “On the theory of ferromagnetic resonance, ” pk~l.
Mug., vol. 40, pp. 99–1 15: Tanuarv. 1949.-. . . ,,
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Til’fc!Jil
~l=~o l–

Wo2_u2
1

NOYMLJ
p2 . ——

(.OI? -- w~

where

@l= ’yHl

ET, = internal static magnetic field

yo = permeability of free space

Y = gyromagnetic ratio

M= magnetic polarization density

U = angular frequency.
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(1)
/.42 TMW
—. (3)
PI W02— TMwo — GJ2

Assuming a demagnetization factor N, the internal field

(2) is related to the external field. Expressing the magnetic

polarization density in terms of a magnetic susceptibil-

ity K, and the internal field, the final equation is

Nz @7K(l + NK) Ha
—=_ (4)
PI #Ha2(l + K) – w’(1 + NK~ “
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An Improved Rlethod for the Determination

of Q of Cavity Resonators”

AMARJIT

Summery—Tlte various Q factors and circuit efficiency of a cavity

resonator can be evaluated from standing-wave measurements on
a transmission line or waveguide coupled to the resonator. In the

usual method, measurement errors near the half-power points have

an unduly large influence on the result. This paper describes a
method in which thk type of error is avoided.

In the new method, vswr and position of minimum at various fre-

quencies are plotted on a Smith chart and a circle is drawn through
the points. This circle is suitably rotated around the center of the

chart and a value of equivalent susceptance is read off for each fre-

quency. The graph of susceptance vs frequency is a straight line,
from whose slope the Q factors are evaluated.

The underlying theory of the above method is discussed and

typical experimental results are presented. Charts of parameters re-

quired in the calculations are given.

INTRODUCTION

T

HE measurement of the Q of cavity resonators

finds many applications in the field of microwave

electronics, as well as in physical research. Sev-

eral methods of determination of Q have been devel-

oped.1–3 Among these is the method involving measure-

* Manuscript received by the PGMTT, June 19, 1957; revised
manuscript received, Auqust 6, 19S7.
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McGraw-Hill Book Co., Inc., New York, N. Y.; 1947.
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SINGHf

ments on standing waves in a transmission line or wave-

guide coupled to the resonator. The method is not a

quick one; however, it has the advantage elf supplying

the most complete information about the resonator and

the coupling system. The losses inside the cavity,, the

losses in the coupling system, and the power coupled

into the transmission line, can all be separated out.~

This information is indispensable in such ~applica tions

as design of microwave tubes, where the circuit effi-

ciency is an important parameter.

After data have been obtained on the variation of

vswr and the position of voltage minimum in the line

as functions of frequency, it is possible to determine

the frequencies which correspond to the half-power

points. The Q factors can then be evaluated. The pre-

viously developed methods of obtaining the half-power

frequencies employ a curve showing vswr vs frequency

or one showing the position of the minimum vs fre-

quency. On these curves, one reads off the frequencies

which correspond to certain values of vswr or of shift

in the position of the minimum. It is to be noteci that

these curves are not geometrically simple ones, and that

any errors in the observations near the half-power points

have a large influence on the result. In fact, a discrep-

ancy may be observed between the results obtained

4 L. Malter and G. R, Brewer, “Microwave Q measurements in
the presence of series losses, ” Y. A@pl. Phys., vol. 20, pp. 918-92.5;
October, 1949.
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