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Propagation in Ferrite-Filled Microstrip*
MORRIS E. BRODWINT

Summary-—The propagation constant of a ferrite~filled microstrip
is measured as a function of the longitudinal static magnetic field.
The results agree with the analysis by Van Trier of the infinite paral-
lel plane waveguide filled with gyromagnetic media. The analysis is
extended to anisotropies greater than 0.5. A simple relationship be-
tween propagation constant and anisotropy for the quasi-TEM mode
with small spacing (X<<),) is neted. Cutoff spacings for higher
modes are calculated. An apparatus for the measurement of propaga-
tion constant independently of interface reflections is described.

INTRODUCTION

ROPAGATION of electromagnetic waves in
Pmedia possessing tensor permeability has been

the subject of considerable investigation. This
interest has been stimulated by the development of
low-loss ferromagnetic materials called ferrites which
easily exhibit electron spin resonance. Van Trier! has
solved the case of a circular waveguide filled with ferrite
and biased in the direction of propagation. He also an-
alyzed in some detail the ferrite-filled parallel plane
waveguide with a longitudinal magnetizing field. The
case of circular waveguide filled with ferrite material
and magnetized in the direction of propagation has
also been treated by Kales.? Lax® has investigated the
rectangular waveguide partially filled with ferrite and
transversely magnetized.

The principal experimental work with ferrites has
been largely restricted to the circular and rectangular
waveguide structures. The only reported work in strip-
line waveguide is that of Fix* and Arditi.? Fix* placed
the ferrite material between two coupled strip-lines.
When the stripline fields are in phase quadrature, a
circularly polarized wave is produced in the fringing
region. With a longitudinal static magnetic field, the
structure exhibited nonreciprocal effects. Arditi® sym-
metrically located the ferrite slab in a microstrip struc-
ture and took measurements of relative attenuation and
phase shift. No attempt was made to explain quantita-
tively the experimental results.

The problem treated in this paper is the determina-
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tion of the applicability of the parallel plane waveguide
analysis to the wide strip ferrite-filled microstrip. More
specifically, we attempt to determine how closely the
variation in propagation constant with longitudinal mag-
netic field for microstrip follows the variation predicted
by a parallel plane analysis of the quasi-TEM mode.
The analysis of Van Trier is extended to include high
values of anisotropy.

A simple relationship between anisotropy and propa-
gation constant is derived for the quasi-TEM mode.
Experiments are described for determining the propa-
gation constant independent of the ferrite interface
reflections.

ANALYSIS

We consider the medium to be a lossless dielectric
with a tensor permeability

¥1 —iuz 0
(w) = iiuz ur 0 . (1
LO 0 MJ

If the ferrite is demagnetized us =g, and ps=0; at satu-
ration uz = uo.

We commence with a cartesian coordinate system
with the biasing magnetic field in the 2z direction. The
fields are assumed to be of the form u(x, y)e®tT= Fol-
lowing Van Trier, the substitution of the tensor perme-
ability into Maxwell’s equations yields the coupled
wave equations

VPH, + aH, + bE, = 0 (2a)
and
VEE, +cE, +dH, = 0 (2b)
where
a=T? + wleuy
b= — we et r
M1
a M2 ’
c=T"4 wu |1 — [ —
223
d = wu,l.
By meaus of a change in variable
E,=a+ as (3a)
Hz = Kloél + Kzolz (3b)

where K; and K, are chosen to uncouple the equations
in oy and es. )
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Egs. (2a) and (2b) can be written as

Via, + 0, = 0 i=1,2 (4)
where
0_1,22 1 M2 2
o= g ()
Wy 2 \u

GG - e

Application of the boundary condition, Ei;n=0 yields
o+ oz =0 (6a)

and
d AR

82| — (ofar + o) | — 81| — (o2ay -+ o1%w)
or tLdn i

‘]— [61(1 + 83d] [% (O£1 + 012)} - O (6b)

where
81 = iw[w?e(ua? — pa?) — wal?]/8
8y = wu2l'?/8
8 = — fwleusT/6
5 = {1+ oe(uy + u) {2+ w?e(us — p2)}.

d/97, 0/dn are the tangential and normal derivatives.
The symmetrical and antisymmetrical solutions of (4)
are substituted into the boundary conditions, (6a) and
(6b), and the resulting expressions evaluated on the
boundary of Fig. 1. This process leads to two equations
which are implicit relations involving the propagation
constant and the anisotropy, pe/p1.

Restricting the discussion to the antisymmetric solu-
tions leads to the following relation involving I',.

01P2 - OzPl = 0 (7)
where

01,2 = ouiVenos, 1|1 — Ui’

1412 — (‘f>2
M1

e+ 02 - ()

[ein,g,Xp, 4+ e—ial,eror] [6iﬂ2,eror _ e—iﬂz.eror]

Py =
where
Xor = XowVeui.

Values of the propagation constant I'y are deter-
mined by choosing a suitable spacing and anisotropy
and varying the propagation constant until the left-
hand side of (7) is zero. Eq. (7) applies to the odd quasi-
TE modes, and even quasi-TM modes as well as the
quasi-TEM mode. The ambiguity between a correct
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Fig. 1—Coordinates for parallel plane waveguide.
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Fig. 2—Propagation constant vs anisotropy-—quasi-TEM.

value of propagation constant and the mode with which
it is related is resolved by starting the calculations with
small anisotropy. The assumed values of propagation
constant are chosen in the immediate region of the cor-
responding isotropic mode.

The propagation constant, I';, for the quasi-TEM
mode has been calculated for a range of X,, and ug/u1,
Fig. 2. The curve X,,=1.5 corresponds to the behavior
of the waveguide with approximately A\/2 spacing be-
tween the parallel planes. The wavelength, X, is the in-
trinsic wavelength associated with the material. For
spacings less than A/2, the dependence of I'; on pz/m
approaches a circular locus. Additional curves (X,,=0.1,
0.2, 0.3) were calculated but are not displayed since
they overlap the X,,=0.414 curve. This result is useful
for design purposes since it relates the propagation con-
stant and anisotropy in a simple fashion.
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For small spacing (X,,<0.414)

e e

The error between points calculated with (8) and points
laboriously calculated with (7) is less than 0.9 per cent
for small spacing.

For large spacing (X, =35), the trend is reversed.
The propagation constant increases with anisotropy
instead of decreasing. This peculiar behavior implies
that the waveguide acts as a slow wave structure for
large spacing and a fast wave structure for small spac-
ing.

When the anisotropy is unity, the corresponding
value of the propagation constant is undetermined.
This result arises from the behavior of U as ps/ui—1
and I'»—0. U can have any value depending upon the
manner in which the variables approach the limit. The
trend of the values for anisotropy less than unity and
small spacing indicates that the propagation constant
tends toward zero as the anisotropy tends toward
unity. This result has been verified experimentally. For
an anisotropy greater than unity, values of the propa-
gation constant cannot be determined from (7) or its
symmetric counterpart. For example, Fig. 3 is a plot of
O1P:—0:Py vs T/t with us/mm=2, X, =0.414. At
low values of T'./4, the function is imaginary and nega-
tive. As I'./7 increases, the functions tend toward in-
finity. At a larger value of I', /7, the function starts again
with negative real values. Since the function does not
pass through zero, the waveguide is bevond cutoff for
anisotropies greater than unity.

The critical spacings for the higher modes is deter-
mined by setting I', equal to zero in (7) and solving for
X, .

, nw
X, = even #. 9

2m1/2
-0
M1
When the process is repeated for the symmetric solu-
tions, the same result is obtained, but with odd #. The
mode titles are assigned by comparing the result with
the solutions for the isotropic case.

The critical spacing for the quasi-TM, modes are
shown in Fig. 4. The critical spacings for the quasi-TE
modes are the same as the critical spacings for the
quasi-TM modes. This degeneracy in the isotropic case
is preserved in the anisotropic case. If we choose a
spacing much smaller than /2 to insure that the quasi-
TEM mode is the only propagating mode, then an in-
crease in anisotropy does not permit the propagation of
higher modes. This result follows from the increase in
critical spacing with increasing anisotropy.

ExXPERIMENTAL PROCEDURE

The experimental problem is to determine how closely
the ferrite-filled microstrip approximates the theoret-
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Fig. 4—Ciritical spacings for the higher modes.

ical predictions of the parallel plane waveguide. The
technique consists of placing a ferrite-filled microstrip
in a longitudinal magnetic field and determining the
relationship between the propagation constant and the
magnetic field. In order to approach as closely as possible
the parallel plane case, the upper strip width is approxi-
matelv N/2. The microstrip geometry is shown in Fig. 5.

The principal experimental difficulties are caused by
the necessity for placing the microstrip within a sole-
noid. The space limitations prohibit the use of direct
field sampling techniques. If measurements are taken
external to the ferrite section, the usual phase sensitive
bridges are subject to errors caused by variable dielec-
tric-ferrite interface reflections. To avoid these difficul-
ties, a perturbation technique was employed. This ap-
paratus consists of a movable small reflector mounted
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Fig. 7—Phase sensitive bridge.

close to the upper plane of the stripline, Fig. 6. The
metal wedge reflects part of the fringing field, and the
resultant reflections are determined by a microwave
bridge, Fig. 7. The position of the reflecting element is
controlled by means of a lead screw. When the reflect-
ing element is displaced by A,/2, the total reflection
from the sample is unchanged. In this manner, the in-
terface reflections as well as any reflections from the
transitions do not affect the measurement.

The samples were prepared in the following manner.
To insure that higher modes would not propagate, the
spacing between upper and lower planes of the strip-
line was chosen as 0.057 inch for a dielectric constant of
7.3. Rectangular samples, %X13X0.057 inch, were
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prepared and fitted into a polystyrene slab. The dielec-
tric sample holder was cut with linear tapers at each
end to reduce reflections {from the transitions. The up-
per and lower conducting planes were prepared by
spraying silver paint on the masked sample holder and
electroplating a 50-micron copper film. The ferrite em-
ployed in these experiments was “R-1,” manufactured
by General Ceramic and Steatite. The dielectric con-
stant of the ferrite, e= 7.3, was measured by a standard
waveguide technique and by the microstrip method pre-
viously described. This value is considerably different
from the nominal value of 13. The discrepancy is pos-
sibly due to the large batch to batch variation of early
ferrite materials.

EXPERIMENTAL RESULTS

The phase constant was measured for magnetic fields
between 0 and 1700 oersteds. The results of these meas-
urements are shown in Fig. 8. To determine the relative
transmission loss, a matched detector was placed at the
output transition and the detected energy was noted
for different values of applied field. These results are
shown in Fig. 9. No significant difference in phase con-
stant or insertion loss was noted when the experiments
were repeated with a reversed magnetic field.

DiscussioN

The variation of phase constant with applied mag-
netic field agrees, qualitatively, with the predicted
behavior of the ferrite-filled parallel plane waveguide.
Starting with zero applied field, the phase constant
should decrease as the anisotropy is increased, Fig. 2,
X,.=0.414. At the magnetic field at which the aniso-
tropy is unity, the propagation constant is zero. Above
this point, the ferrite section is beyond cutoff. The ex-
perimental data shows that the phase constant de-
creased until a field of 1025 oersteds was reached. The
transmission data indicates that the stripline was cut
off at 1025 oersteds. The maximum field was 1700
oersteds. The theory, as previously developed, cannot
predict losses since it was assumed that p and p» are
real quantities. Consequently, the propagation constant
is a pure imaginary and attenuation is not expected.
The general trend of the relative transmission, Fig. 9
shows an increase in loss with an increase in magnetic
field. From 1025 to 1700 oersteds, the readings re-
mained constant. This small residual transmission is
attributed to leakage between the microstrip-waveguide
transitions. The fine variation in transmission is pro-
duced by the changing wavelength in conjunction with
the interface reflections. This is the typical interference
phenomenon observed with any resonant structure with
varying phase shift.

It is possible to obtain a theoretical expression for the
variation of phase constant as a function of the applied
magnetic field subject to the following simplifying as-
sumptions:
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Fig. 9—Relative transmission vs applied field.

1) The static field inside the sample is assumed to be
homogeneous. The effects of demagnetization can be
expressed by a demagnetizing factor. Since the sample
is a rectangular parallelepiped, the internal field is
actually inhomogeneous, but this effect is neglected.

2) The magnetic behavior can be expressed by a con-
stant magnetic susceptibility. This assumption is ap-
proximately correct only in the region of saturation.

With these assumptions, a relationship between pe/
and the applied field, H,, can be determined.

The anisotropy is related to the applied field by (see
Appendix)

T ovyK(1 + NK)H,

= (10)
B vHS(1 + K) — oX(1 + NK)?
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where

w=angular frequency

¥ =gyromagnetic ratio

K =magnetic susceptibility

N =demagnetization factor
H,=applied static magnetic field.

If the ferrite slab can be represented by an equivalent
ellipsoid of revolution, the demagnetization factor can
be calculated. With the dimensions of the slab used in
the experiments, N =23X10% In the region of satura-
tion, K is on the order of unity and NK<1. The de-
magnetization effects, therefore, are neglected. The re-
lationship between anisotropy and H, is then given by

vKH,
L “ . (11)
i YHA(1+ K) — o

The susceptibility is determined by assuming that cut-
off occurs when the anisotropy is unity and solving (11)
for K, for cutoff at 1025 oersteds. The calculated value
for K, is 2.45. When this value of K is substituted into
(11), the resultant relationship between us/u and H,
represents the theoretical behavior of the anisotropy
with the applied field. To determine I',/4 as a function
of H,, (11) is substituted into (8).

@)=

This equation was employed for drawing the theoretical
curve of Fig. 8.

In general, the theoretical curve follows the trend of
the data. The principal discrepancy is in the region be-
tween 100 and 600 oersteds, where the experimental
points are lower than the predicted value. This dis-
crepancy may be a result of the assumption that K re-
mained constant. In the low-field region, where the
material is not saturated, K is larger than the chosen
value. Increasing K decreases the right-hand side of
(12) and would yield a smaller value for I', /3.

A question arises as to how much of the insertion loss
is due to a cutoff effect and how much is due to radia-
tion from the microstrip. With this experimental tech-
nique, it is not possible to distinguish between the two
effects. However, the fact that the experimental points
agree very closely with the theoretical values in the
region of large insertion loss might indicate that the
cutoff effect predominates.

wyK H, ] (12)

B [yzHa2(1 1K) — o

APPENDIX

The relationship between the applied magnetic field
and anisotropy is derived from Polder’s equations® for
p1 and ue:

¢ D. Polder, “On the theory of ferromagnetic resonance,” Phil,
Mag., vol. 40, pp. 99-115; January, 1949,
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M1=M0l:1 —Tj] 1 L 3)
wo? — w g1 @ — yMwy — w?

oy Moo Assuming a demagnetization factor N, the internal field

po = ——— (2) is related to the external field. Expressing the magnetic

wo” — w* polarization density in terms of a magnetic susceptibil-

where ity K, and the internal field, the final equation is

wo=~H: b wyK(1 + NK)H,

H,=internal static magunetic field
mo=permeability of {ree space
v =gyromagnetic ratio
M =magnetic polarization density
w=angular frequency.

The anisotropy, uz/ui, is related to the internal field by

T 2 . (4)
pmo VHI(1 4+ K) — o¥(1 + NK)?
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An Improved Method for the Determination

of Q of Cavity Resonators®
AMARJIT SINGH?}

Summary—The various Q factors and circuit efficiency of a cavity
resonator can be evaluated from standing-wave measurements on
a transmission line or waveguide coupled to the resonator. In the
usual method, measurement errors near the half-power points have
an unduly large influence on the result. This paper describes a
method in which this type of error is avoided.

In the new method, vswr and position of minimum at various fre-
quencies are plotted on a Smith chart and a circle is drawn through
the points. This circle is suitably rotated around the center of the
chart and a value of equivalent susceptance is read off for each fre-
quency. The graph of susceptance vs frequency is a straight line,
from whose slope the Q factors are evaluated.

The underlying theory of the above method is discussed and
typical experimental results are presented. Charts of parameters re-
quired in the calculations are given.

INTRODUCTION

HE measurement of the @ of cavity resonators
finds many applications in the field of microwave
electronics, as well as in physical research. Sev-
eral methods of determination of Q have been devel-
oped.’~3 Among these is the method involving measure-
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ments on standing waves in a transmission line or wave-
guide coupled to the resonator. The method is not a
quick one; however, it has the advantage of supplying
the most complete information about the resonator and
the coupling system. The losses inside the cavity, the
losses in the coupling system, and the power coupled
into the transmission line, can all be separated out.*
This information is indispensable in such applications
as design of microwave tubes, where the circuit effi-
ciency is an important parameter.

After data have been obtained on the variation of
vswr and the position of voltage minimum in the line
as functions of frequency, it is possible to determine
the frequencies which correspond to the half-power
points. The Q factors can then be evaluated. The pre-
viously developed methods of obtaining the half-power
frequencies employ a curve showing vswr vs frequency
or one showing the position of the minimum vs fre-
quency. On these curves, one reads off the frequencies
which correspond to certain values of vswr or of shift
in the position of the minimum. It is to be noted that
these curves are not geometrically simple ones, and that
any errors in the observations near the half-power points
have a large influence on the result. In fact, a discrep-
ancy may be observed between the results obtained

4 L. Malter and G. R. Brewer, “Microwave Q measurements in
the presence of series losses,” J. Appl. Phys., vol. 20, pp. 918-925;
October, 1949,



